
Iterative Subgraph Mining for Principal Component Analysi s

Submitted for Blind Review

Abstract

Graph mining methods enumerate frequent subgraphs
efficiently, but they are not necessarily good features for
machine learning due to high correlation among features.
Thus it makes sense to perform principal component anal-
ysis to reduce the dimensionality and create decorrelated
features. We present a novel iterative mining algorithm
that captures informative patterns corresponding to major
entries of top principal components. It repeatedly calls
weighted substructure mining where example weights are
updated in each iteration. The Lanczos algorithm, a stan-
dard algorithm of eigendecomposition, is employed to up-
date the weights. In experiments, our patterns are shown to
approximate the principal components obtained by frequent
mining.

1. Introduction

Graphs are general and powerful data structures that can
be used to represent diverse kinds of objects. Much of the
real world data is represented not as vectors, but as graphs
including sequences and trees, for example, biological se-
quences, semi-structured texts such as HTML and XML,
chemical compounds, RNA secondary structures, and so
forth. To analyze graph databases, graph mining methods
such as AGM [5], gSpan [20] or Gaston [10] have been suc-
cessfully applied. They enumerate all frequent subgraphs
(i.e., patterns) whose frequency is above a minimum sup-
port threshold. After the mining, we can create a feature
space using the patterns as in Figure 1. Here, the existence
of a pattern is represented as 1, otherwise -1.

Since the dimensionality of this feature space is typically
too high to browse comfortably, it is required to map the fea-
ture space to a low dimensional space. Principal component
analysis [15] is the most popular method of dimensionality
reduction. Principal components are computed as the eigen-
vectors of the covariance matrix. When the number of ex-
amples is smaller than the dimensionality, it is also possible
to calculate them from the Gram matrix [15]. It is com-
monly practised to map high dimensional objects to a two
or three dimensional space to visualize the relationship be-

(-1,...,-1,1,-1,...,-1,1,-1,...)
B

A

A

B
A

AA

B

A

APatterns

Figure 1. Feature space based on subgraph
patterns. The feature vector consists of bi-
nary pattern indicators.

tween them. PCA is also used for indexing graphs by taking
the patterns corresponding to major elements of principal
components. Such a technique is known as latent seman-
tic indexing (LSI) in the text processing community [3, 2].
Here, each principal component represents a topic, and its
major elements correspond to the set of words describing
the topic. Also in our graph cases, principal components
are interpretable based on the patterns associated to them.

However, the following naive approach has efficiency
problems;

1. First, frequent subgraph mining is applied to create the
feature space.

2. Then, principal component analysis is performed.

It is because we need to lower the minimum support thresh-
old to capture detailed information. We present an iterative
mining approach for PCA, where salient patterns are pro-
gressively collected by several distinct graph mining calls.
In each mining, real-valued weights are assigned to trans-
actions (graphs), and the patterns satisfying the weighted
support criterion is enumerated (i.e., weighted substruc-
ture mining). Such iterative mining approaches have been
applied to a wide variety of problems, including boost-
ing [7, 13], LARS [17], novelty detection [11], partial least
squares regression [14], and clustering[18, 19]. In compar-
ison to the naive approach, these algorithms are shown to
achieve better efficiency without losing prediction accuracy.

For creating an iterative mining method for PCA, we
need to take a close look at the numerical methods of eigen-
decomposition [1, 16, 4]. We particularly focus on the

Lanczos method [8], which is the most popular and widely
used in numerical software including MATLAB. One of the
key steps of the Lanczos method is matrix-vector multipli-
cation between the design matrix and a Lanczos vector. In
our algorithm, called graph PCA (gPCA), this step is ap-
proximated using weighted subgraph mining. In experi-
ments, we evaluate gPCA in terms of approximation error
and computational time. For interpretability, the number of
patterns should be minimized while keeping the approxi-
mation error small. We will show that gPCA’s patterns can
approximate the principal components.

The rest of the paper is organized as follows. In Section
2, we give basic notations and define our problems. Sec-
tion 3 reviews the Lanczos method and how it is used for
principal component analysis. In Section 4, the Lanczos
algorithm is applied to graph data. Section 5 reviews the
weighted mining method. Section 6 contains our experi-
ments evaluating the approximation accuracy and efficiency
of gPCA. Section 7 concludes the paper.

2. Preliminaries

We deal with undirected, labeled and connected graphs.
To be more precise, we define the graph and its subgraph as
follows:

Definition 1 (Labeled connected graph)A labeled graph
is represented in a 4-tupleG = (V, E,L, l), whereV is a
set of vertices,E ⊆ V × V is a set of edges,L is a set of
labels, andl : V ∪E → L is a mapping that assigns labels
to the vertices and edges. A labeled connected graph is a
labeled graph such that there is a path between any pair of
vertices.

Definition 2 (Subgraph) Let G′ = (V ′, E′,L′, l′) and
G = (V, E,L, l) be labeled connected graphs.G′ is a
subgraph ofG (G′ ⊆ G) if the following conditions are
satisfied: (1)V ′ ⊆ V , (2) E′ ⊆ E, (3) L′ ⊆ L, (4)
∀v′ ⊆ V ′, l(v′) = l′(v′) and (5)∀e′ ⊆ E′, l(e′) = l′(e′). If
G′ is a subgraph ofG, thenG is a supergraph ofG′.

Let p be a subgraph pattern in a graph, andP be the set
of all patterns, i.e., the set of all subgraphs included in at
least one graph. Givenn graphs in the database, the feature
vector of each graphGi is ad-dimensional vectorxi, where
a component corresponding to patternp is written as

xip =

{

1 if p ⊆ Gi,
−1 otherwise

Denote byX the design matrix whosei-th row corresponds
to xi. In this paper, principal componentsz1, . . . , zm ∈ ℜd

corresponds tom major eigenvalues of the covariance ma-
trix X⊤X . Here, we do not centralize the design matrix

X as in latent semantic indexing [3]. Principal compo-
nents can also be computed from the Gram matrixA =
XX⊤ [15]. The eigenvalues ofA are equal to those of
X⊤X . If the major eigenvectors ofA are denoted as
v1, . . . , vm, then the principal components are recovered
as

zi = X⊤vi. (1)

Our algorithm follows the latter path, namely, computing
the eigenvectors of the Gram matrix. However, the exact
computation of the Gram matrix and the recovery of prin-
cipal components (1) requires the whole feature space. In
our case, it is intractable, because all the patterns have tobe
enumerated a priori.

Therefore, we need to create a restricted design matrix
X̃ where a tractable number of patterns are used. The se-
lection of patterns is of utmost importance in obtaining ac-
curate approximations̃zi. One obvious way to reduce the
number of patterns is to use the minimum support thresh-
old, and create a feature space with frequent patterns only.
However, as shown in experiments later, it does not lead to
accurate approximation due to high correlation among fea-
tures. We propose an iterative mining method based on the
Lanczos method for calculating major eigenvectors. The
weighted subgraph mining is embedded to the Lanczos iter-
ation. A handful of patterns are mined with different criteria
in each iteration, thereby avoiding the correlation problem
effectively.

3. The Lanczos algorithm

In this section, we review the Lanczos algorithm briefly.
Algorithm 1 shows how to compute the all eigenvalues and
eigenvectors of an× n symmetric matrixA. Let us denote
the eigenvalues ofA as(λ1, . . . , λn), and denote byV the
matrix whosei-th column corresponds to thei-th eigenvec-
tor. Let Q = (q1, . . . , qn) denote an orthogonal matrix.
Then, the following transformation does not alter the eigen-
values

T = Q⊤AQ. (2)

The Lanczos algorithm finds a matrixQ such thatT is tridi-
agonal. Here,T is parametrized as follows,

T =













α1 β1 · · · 0

β1 α2

. . .
...

...
. . .

. . . βn−1

0 . . . βn−1 αn













.

The Lanczos algorithm computes the entries ofT and Q
progressively using elementary matrix computations. The
columns ofQ are called “Lanczos vectors”. SinceT is tridi-
agonal, the eigendecomposition can be efficiently done via

Schur decomposition. Denote byR the eigenvectors ofT .
Then, the eigenvectors ofA are obtained as

V = QR. (3)

This algorithm is employed in many numerical computation
software including MATLAB. The orthogonal matrix lead-
ing to tridiagonalT is not unique. One can start from an
arbitrary initial vectorq1, and always obtain a tridiagonal
matrix asT .

Algorithm 1 The Lanczos algorithm.

1: Input: A ∈ R
n×n, q1 ∈ R

n, ‖q1‖ = 1.
2: Output: All eigenpairs[λ, V]
3: Initial: r0 = q1; β0 = 1; k = 0
4: while βk 6= 0 do
5: qk = rk/βk

6: k = k + 1
7: αk = q⊤

k Aqk

8: rk = Aqk − βk−1qk−1 − αkqk

9: βk = ‖rk‖2
10: end while
11: [λ, R] = EigenDecomposition(T)
12: V = QR

In principal component analysis, we need only topm
eigenpairs. In that case, we can stop the Lanczos algo-
rithm afterK(< n) steps. Denote byTk, Qk, Rk, Vk, λk

the early versions ofT, Q, R, V, λ afterk iterations, respec-
tively. The eigenpairs(λk, Vk) are only approximation of
top-k eigenpairs ofA. However, there is an important prop-
erty that the eigenvectors corresponding to larger eigenval-
ues are approximated more accurately. Thus, ifk is suf-
ficiently larger thanm, the top-m eigenvectors inVk are
accurate estimates of the top-m eigenvectors ofA. For rig-
orous error analysis, see [12]. An interesting point is that
the accuracy depends on the initial vectorq1. If q1 is set to
the first eigenvector ofA, Vk gives exactly the top-k eigen-
vectors [6]. However, since we do not know a priori the first
eigenvector,q1 is usually set to an arbitrary vector. In our
experiments, we always usedq1 = 1/

√
n.

Now the question is how to determine when to stop the it-
eration. Here, the iteration is terminated, if all them eigen-
values have converged [16, 4]:

‖AV i − λiV i‖2
λi

=
|βk||Rki|

λi

< σ, ∀i = 1, . . . , m, (4)

whereσ is the parameter controlling error tolerance. We set
σ = 0.01 in our experiments.

It is known that the Lanczos algorithm is prone to round-
ing errors and the orthogonality between the Lanczos vec-
tors is quickly lost. Several methods have been proposed for

this problem, such as implicitly/explicitly restarted Lanc-
zos and selective/partial orthogonalization [16]. In thispa-
per, we apply the Gram-Schmidt procedure to ensure the
orthogonality between the Lanczos vectors. Algorithm 2
summarizes the Lanczos algorithm with early stopping and
reorthogonalization.

Algorithm 2 The Lanczos algorithm with early stopping
and reorthogonalization.

1: Input: A ∈ R
n×n, q1 ∈ R

n, ‖q1‖ = 1, m
2: Output: Top eigenpairs{(λi, vi)}mi=1

3: Initial: r0 = q1; β0 = 1; k = 0
4: while (4) is not truedo
5: qk = rk/βk

6: k = k + 1
7: αk = q⊤

k Aqk

8: rk = Aqk − βk−1qk−1 − αkqk

9: for j = 1 : k − 1 do ⊲ Reorthogonalization
10: rk = rk − qj(q

⊤
j rk)

11: end for
12: βk = ‖rk‖
13: [λk, Rk] = EigenDecomposition(T k)
14: Vk = QkRk

15: end while
16: Truncate[λk, Vk] to topm eigenpairs

4. Application to Graph Data

In this section, we explain how to apply the Lanczos al-
gorithm to graph data. Normal PCA creates principal com-
ponents depending on all features, assuming that all fea-
tures can be accessed in memory. For graph data, it is not
possible to access all features at the same time. However,
due to the structure of the feature space, namely, subgraph-
supergraph relationships among patterns, we can solve the
following weighted substructure mining problem [11]. De-
note byw ∈ ℜn example weights. The weighted mining
enumerates the following pattern set,

Pw = {p |

∣

∣

∣

∣

∣

∣

n
∑

j=1

wjxjp

∣

∣

∣

∣

∣

∣

≥ ǫ}, (5)

whereǫ is a predetermined constant. Therefore, we can
quickly collect features highly correlated with a given vec-
tor w. See next section for the mining algorithm. Our ques-
tion here is how we can use this tool to compute principal
components approximately without accessing all features.

To understand the problem better, let us first consider
the PCA ofd-dimensional vectorial data, i.e.,X ∈ R

n×d.
PCA is done by the eigendecomposition of the Gram matrix
A = XX⊤. Let us consider the following intermediate

variable

gk = X⊤qk.

where thei-th entry is described as

gki =

n
∑

i=1

xipqkj .

SubstitutingA = XX⊤ to the equations in Algorithm 2,
it turns out that the Lanczos algorithm accesses the design
matrix X throughgk andXgk. The reformulated pseudo
code is summarized in Algorithm 3. What it implies is that
the features corresponding to zero entries{i|gki = 0} need
not to be accessed in thek-th iteration. More aggressively,
we can reduce the number of accessed features by introduc-
ing the tolerance thresholdǫ as

{i | |gki| ≥ ǫ}. (6)

Alternatively, one can take the bestℓ features with largest
|gki|. It provides a reasonable method to trade the number of
accessed features and the accuracy of principal components.

Algorithm 3 PCA based on the Lanczos method

1: Input: Design matrixX ∈ R
n×d

2: Output: Principal componentsZ ∈ ℜd×m

3: Initial: r0 = q1; β0 = 1; k = 0
4: while (4) is not truedo
5: qk = rk/βk

6: k = k + 1
7: gk = X⊤qk ⊲ Intermediate variable
8: αk = g⊤

k gk

9: rk = Xgk − βk−1qk−1 − αkqk

10: for j = 1 : k − 1 do
11: rk = rk − qj(q

⊤
j rk)

12: end for
13: βk = ‖rk‖
14: [λk, Rk] = EigenDecomposition(T k)
15: Vk = QkRk

16: end while
17: Truncate[λk, Vk] to topm eigenpairs
18: Z = X⊤Vm

For graph data, the features satisfying the criterion (6)
can be enumerated by mining (5) withw = qk. By incor-
porating the mining step to Algorithm 3, we finally arrive
at our graph PCA algorithm (Algorithm 4). For indexing
purposes, we collect mined patterns to the pattern poolP .
Each principal components is indexed by the patterns cor-
respond to its major elements. In analogy to text mining,
each principal component corresponds to a “topic” and the
associated patterns describe that topic.

Algorithm 4 Graph PCA
1: Input: GraphsG1. . . . , Gn, Toleranceǫ
2: Output: PatternsP , Principal componentsZ ∈ ℜ|P |×m

3: Initial: q1 = 1/
√

n; r0 = q1; β0 = 1; k = 0; P = ∅
4: while (4) is not truedo
5: qk = rk/βk

6: k = k + 1

7: Pk = {p |
∣

∣

∣

∑n

j=1
qkjxjp

∣

∣

∣
≥ ǫ} ⊲ Pattern search

8: P ← P ∪ Pk

9: XP : design matrix restricted toP
10: αk = q⊤

k XP X⊤
P qk

11: rk = XP X⊤
P qk − βk−1qk−1 − αkqk

12: for j = 1 : k − 1 do
13: rk = rk − qj(q

⊤
j rk)

14: end for
15: βk = ‖rk‖
16: [λk, Rk] = EigenDecomposition(T k)
17: Vk = QkRk

18: end while
19: Truncate[λk, Vk] to topm eigenpairs
20: Z = X⊤

P Vm

5 Optimal Pattern Search

In this section, we describe the weighted subgraph min-
ing in detail. Our search strategy is a branch-and-bound
algorithm that requires a canonical search space in which a
whole set of patterns are enumerated without duplication.
As the search space, we adopt the DFS code tree [20]. The
basic idea of the DFS code tree is to organize patterns as
a tree, where a child node has a supergraph of the pattern
in its parent node. (Figure 2). A pattern is represented as
a text string called the DFS (depth first search) code. The
patterns are enumerated by generating the tree from the root
to leaves using a recursive algorithm. To avoid duplications,
node generation is systematically done by rightmost exten-
sions. Algorithm 5 shows the pseudo code for the recursive
algorithm.

For efficient search, it is important to minimize the size
of the search space. To this aim,tree pruningis crucially
important [9, 7]. As stated in (5), our task is to enumerate
all the patterns whose gain function

s(p) =

∣

∣

∣

∣

∣

n
∑

i=1

wixip

∣

∣

∣

∣

∣

is larger thanǫ. Suppose the search tree is generated up to
the patternp. If it is guaranteed that the score of any super-
graphp′ is not larger thanǫ, we can avoid the generation of
downstream nodes without losing the optimal pattern. Our
pruning condition is described as follows.

A B

A B C D A B

Tree of Substructures

A

B C

Figure 2. Schematic figure of the tree-shaped
search space of graph patterns (i.e., the DFS
code tree). To find the optimal pattern effi-
ciently, the tree is systematically expanded
by rightmost extensions.

Table 1. Summary of datasets.
data # avg. atoms # avg. bonds

EDKB-AR 146 19.5 21.1
EDKB-ER 131 19.2 20.7
EDKB-ES 59 18.2 19.7

CPDB 684 14.1 14.6
CAS 4337 29.9 30.9

Theorem 1 Define

s+(p) = 2
∑

{i|wi≥0,p⊆Gi}

|wi| −
n

∑

i=1

wi (7)

s−(p) = 2
∑

{i|wi<0,p⊆Gi}

|wi|+
n

∑

i=1

wi. (8)

For any supergraphp′ of p, the following bound holds.

s(p′) ≤ max{s+(p), s−(p)} (9)

Therefore, the search tree is pruned atp, if ǫ >
max{s+(p), s−(p)}.
See [7] for the proof.

6 Experiments

In this section, we evaluate gPCA in terms of approxi-
mation error and computation time. Due to the truncation
of the intermediate variables, the principal components ob-
tained by gPCA are not equal to the true principal com-
ponents which can only be obtained by total enumeration
of patterns. Our goal is to build an approximated princi-
pal components to the true ones. We test our algorithm in

Algorithm 5 Pattern search algorithm
1: procedure PATTERN SEARCH

2: P ← ∅
3: for p ∈ DFS codes with single nodesdo
4: project(p)
5: end for
6: returnP
7: end procedure
8: function PROJECT(p)
9: if p is not a minimum DFS codethen

10: return
11: end if
12: if pruning condition (9) holdsthen
13: return
14: end if
15: if p satisfies the condition (6)then
16: P ← P ∪ {p}
17: end if
18: for p′ ∈ rightmost extensions ofp do
19: project(p′)
20: end for
21: end function

three chemical datasets from the EDKB database are used1:
EDKB-AR, ER and ES (Table 1). They stand for androgen
receptors, estrogen receptors and E-assays, respectively. We
employed relatively small datasets such that total enumera-
tion is possible.

In this experiment, the number of principal components
is set to three. In visualization and machine learning appli-
cations, it is desirable that the the similarity of graphs are
appropriately represented by projected points. We first cre-
ate “true” three-dimensional projections of graphs by total
enumeration and PCA. Here, the minimum support is set to
2, and the pattern size is restricted up to 15 nodes. Denote
by Gtrue the true Gram matrix, representing the dot prod-
uct of three dimensional projections. It is compared withG,
the Gram matrix of gPCA projections. Since they differ in
scale, the Gram matrix is normalized as

Ĝij =
Gij

√

GiiGjj

.

Then, the approximation error is measured using the Frobe-
nius norm as‖Ĝ− Ĝtrue‖. The smaller the approximation
error means the reconstruction of the subspace closer to the
true Gram matrix. In approximating the intermediate vari-
able (6), we employed the top-L approximation rather than
fixing the thresholdǫ.

Figures 4, 5 and 6 show the approximation error of gPCA
in the EDKB-ES, EDKB-ER and EDKB-AR dataset, re-
spectively. AsL increases, the Gram matrix is more accu-

1http://edkb.fda.gof/databasedoor.html

Figure 3. A three-dimensional plot of pro-
jected points in the EDKB-ER dataset.

rately approximated. The projected points are illustratedin
Figure 3. Also, the patterns associated with principal com-
ponents are shown in Figures 7, 8 and 9. It is observed
that similar subgraph patterns are clustered together in the
same column, but the patterns in different columns are dis-
tinctly different. Frequent patterns are often small and bor-
ing. When the patterns are listed according to frequency,
one has to go down the list up to the bottom to find meaning-
ful features. Our patterns are not immediately interpretable
like words in text mining. Nevertheless our PCA-based pat-
terns look much more meaningful because they are rela-
tively large and capture complex features.

The computational time for larger datasets are measured
and shown in Table 2. For such medium-sized datasets,
the computational time stays within the tractable level (e.g.,
several hours) in an ordinary PC. It is possible to reduce the
computational time by maintaining the whole search tree
in each iteration [17]. However, it would take much more
memory than the current implementation.

7 Conclusion

In this paper, we presented an iterative mining method
that can capture the patterns corresponding to major entries
of principal components. An advantage of iterative mining
methods is that the database is processed with different cri-
teria, leading to several different pattern sets. Comparedto
frequent mining with only one criterion, patterns by itera-
tive mining can characterize different aspects of the graph
database. In supervised learning task, there have been pro-
posed several iterative mining algorithms [11, 14]. There
are several unsupervised clustering algorithms [19, 18] as

0 2000 4000 6000 8000 10000
5

10

15

20

25

30

top−L

ap
pr

ox
im

at
io

n
er

ro
r

ES

Figure 4. Approximation error using top
3 principal components in the EDKB-ES
dataset.

0 2000 4000 6000 8000 10000
40

50

60

70

80

90

100

top−L

ap
pr

ox
im

at
io

n
er

ro
r

ER

Figure 5. Approximation error using top
3 principal components in the EDKB-ER
dataset.

Table 2. Time for finding top 3 principal com-
ponents in the CAS and CPDB dataset.

CAS CPDB
L time (sec) # iter time (sec) # iter
10 9.038 11 1.611 4
50 46.55 6 6.472 4
100 110.9 6 12.21 4
500 702.8 6 62.57 4
1000 2227 4 90.79 4

1 2 3 4 5 6 7 8 9 10

Figure 7. Patterns associated with the top 10 principal comp onents in the EDKB-ER dataset.

1 2 3 4 5 6 7 8 9 10

C

Figure 8. Patterns associated with the top 10 principal comp onents in the EDKB-ES dataset.

1 2 3 4 5 6 7 8 9 10

Figure 9. Patterns associated with the top 10 principal comp onents in the EDKB-AR dataset.

0 1000 2000 3000 4000 5000
80

85

90

95

100

105

110

top−L

ap
pr

ox
im

at
io

n
er

ro
r

AR

Figure 6. Approximation error using top
3 principal components in the EDKB-AR
dataset.

well, but they are essentially similar to the supervised meth-
ods in that they use putative class labels assigned by the
EM algorithm. We pursued a different path, namely the
coupling of the Lanczos method and the weighted subgraph
mining, which does not rely on putative class labels.

Since PCA is the most fundamental dimensionality re-
duction algorithm, gPCA can serve as a basic template for
creating mining algorithms for related problems, such as
canonical component analysis, projection pursuit and non-
negative matrix decomposition. Probablistic variants such
as probabilistic latent semantic analysis are also in sight.
Our mining algorithm can be combined with different kind
of mining algorithms such as itemset mining, sequence min-
ing and tree mining.

References

[1] M. W. Berry. Large-scale sparse singular value computa-
tions. The International Journal of Supercomputer Applica-
tions, 6(1):13–49, Spring 1992.

[2] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using lin-
ear algebra for intelligent information retrieval.SIAM Rev.,
37:573–595, 1995.

[3] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society for Information Science, 41,
1990.

[4] G. H. Golub and C. F. V. Loan.Matrix computations. Johns
Hopkins University Press, 1996.

[5] A. Inokuchi. Mining generalized substructures from a set
of labeled graphs. InProceedings of the 4th IEEE Inter-
natinal Conference on Data Mining, pages 415–418. IEEE
Computer Society, 2005.

[6] I. C. F. Ipsen and C. D. Meyer. The idea behind Krylov
methods. American Mathematical Monthly, 105(10):889–
899, 1998.

[7] T. Kudo, E. Maeda, and Y. Matsumoto. An application
of boosting to graph classification. InAdvances in Neural
Information Processing Systems 17, pages 729–736. MIT
Press, 2005.

[8] C. Lanczos. An iteration method for the solution of the
eigenvalue problem of linear differential and integral opera-
tors. J. Res. Nat. Bur. Stand, 45:255–282, 1950.

[9] S. Morishita. Computing optimal hypotheses efficientlyfor
boosting. InDiscovery Science, pages 471–481. Springer,
2001.

[10] S. Nijssen and J. Kok. A quickstart in frequent structure min-
ing can make a difference. InProceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 647–652. ACM Press, 2004.

[11] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. Bakir.
Weighted substructure mining for image analysis. InIEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR). IEEE Computer Society, 2007.

[12] Y. Saad. On the rates of convergence of the Lanczos and the
block Lanczos methods.SIAM J. Num. Anal., 17:687–706,
1980.

[13] H. Saigo, T. Kadowaki, and K. Tsuda. A linear programming
approach for molecular QSAR analysis. InInternational
Workshop on Mining and Learning with Graphs (MLG),
pages 85–96, 2006.

[14] H. Saigo, N. Krämer, and K. Tsuda. Partial least squares re-
gression for graph mining. InProceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. ACM Press, 2008.

[15] B. Schölkopf and A. J. Smola.Learning with Kernels: Sup-
port Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, 2002.

[16] E. Sjöström.Singular value computations for Toeplitz ma-
trices. PhD thesis, Linköping University, 1996.

[17] K. Tsuda. Entire regularization paths for graph data. In Pro-
ceedings of the 24th International Conference on Machine
Learning, pages 919–926, 2007.

[18] K. Tsuda and T. Kudo. Clustering graphs by weighted sub-
structure mining. InProceedings of the 23rd International
Conference on Machine Learning, pages 953–960. ACM
Press, 2006.

[19] K. Tsuda and K. Kurihara. Graph mining with variational
dirichlet process mixture models. InSIAM Conference on
Data Mining (SDM), 2008.

[20] X. Yan and J. Han. gSpan: graph-based substructure pat-
tern mining. InProceedings of the 2002 IEEE International
Conference on Data Mining, pages 721–724. IEEE Com-
puter Society, 2002.

Appendix: Eigendecomposition using the
Lanczos algorithm

In this section we briefly review how to solve an eigen-
decomposition problem. We hilight the Lanczos algorithm
as an efficient subroutine for solving this problem.

For simplicity, we consider the eigendecomposition of a
Gram matrixA into a diagonal matrixλ and an orthogonal
basisQ such that the following relationship holds;

AV = V λ, (10)

whereλ = diag(λ1, λ1, . . . , λn). SinceA is symmetric, it
can be tridiagonalized such that the following relationship
holds

AQ = QT , (11)

whereQ is an orthonormal basis. Moreover, tridiagonal
matrixT can be decomposed into the Schur form

TR = RE, (12)

whereR is an orthonormal basis andE is a diagonal matrix.
Using equations (11) and (12),A can be rewritten as

A = QTQ−1 = (QR)E (QR)
−1

= ZEZ−1 (13)

This is an eigendecomposition ofA. Since eigendecompo-
sition of a symmetric matrix is uniquely determined, diago-
nal matrixE and orthogonal basisZ coincides withλ and
V in (10), respectively. Therefore, it is clear that we can
split the eigendecomposition into two steps; i) tridiagonal-
ization and ii) Schur decomposition. For the latter part, we
can employ Givens rotations to perform Schur decomposi-
tion on a tridiagonal matrix in linear time. Now the problem
is how to efficiently compute the former part.

The following Lanczos algorithm generates a sequence
of tridiagonal matricesT k from A with the property that
eigenvalues ofT k are progressively better estimates of the
extreme eigenvalues ofA. The tridiagonal matrix generated
by the Lanczos algorithm is written as

T k =













α1 β1 · · · 0

β1 α2

. . .
...

...
. . .

. . . βk−1

0 . . . βk−1 αk













By equating columns inAQ = QT , we find

Aqk = βk−1qk−1 + αkqk + βkqk+1, β0q0 ≡ 0.

From the orthonormality condition ofq, we immediately
get

αk = q⊤
k Aqk.

Moreover,

βk =
Aqk − βk−1qk−1 − αkqk

qk+1

,

as long asβ’s numerator is nonzero. If the numerator were
zero, then we have successfully obtained the invariant sub-
space. Notice thatαk andβk can be efficiently calculated

one another with the update ofqk. This whole procedure
is described in Algorithm 1. Theqk are called asLanczos
vectors, and stored for the later use.

As can be seen from the pseudocode, the Lanczos
method can directly calculate the tridiagonal matrixT =
Q⊤AQ. Moreover, we neither need to modifyA, nor even
need a direct access toA provided that matrix-vector multi-
plication Aq is available. Note that Householder tridiag-
onalization or Givens rotation can also tridiagonalizeA.
However, these methods need to updateA, and therefore
not being applicable whenA is large and sparse.

